
Mathematical Toolkit Spring 2021

Lecture 10: April 29, 2021
Lecturer: Avrim Blum (notes based in part on notes from Madhur Tulsiani)

Probability theory is a mathematical framework used to model uncertainty and variabil-
ity in nature. It is by no means the only contender for this role, but has weathered many
trials through time. A good deal of probability theory was developed long before being
formalized in the way that we’re familiar with now, which is due to Kolmogorov. One
could cite the works of Laplace, Poisson, Gauss, to name a few. So in some sense the for-
malization we present here is not strictly necessary, at least for most simple problems. But
it does place the whole field on a very stable foundation, which is also helpful whenever
something challenges our grasp of this otherwise intuitive discipline.

1 Basics of probability: the finite case

We recall very briefly the basics of probability and random variables. For a more detailed
introduction, please see the lecture notes by Terry Tao, linked from the course homepage.

1.1 Finite probability spaces

Let Ω be a finite set. Let ν : Ω→ [0, 1] be a function such that

∑
ω∈Ω

ν(ω) = 1.

We often refer to Ω as a sample space or outcome space and the function ν as a probability
distribution on this space. An event can be thought of as a subset of outcomes i.e., any
A ⊆ Ω defines an event, and we define its probability as

P [A] = ∑
ω∈A

ν(ω) .

The elements ω ∈ Ω are often called “elementary events” (and associated with their sin-
gleton sets).

1.2 Random Variables and Expectation

In a finite probability space, a real-valued random variable over Ω is any function X : Ω→ R.
So a random variable is technically neither random (it’s quite deterministic) nor a variable
(it’s a function), but it’s a terminology that has stuck.
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For example, if you roll two dice, we might define random variable X1 to be the value of
die 1, random variable X2 to be the value of die 2, and X = X1 + X2 to be the sum of the
two dice.

It will often be natural to go back and forth between random variables and events. For
instance, given a random variable X and a value b we can define the event “X = b” as
{ω ∈ Ω : X(ω) = b}. In the other direction, given an event A, it is often convenient to
define an indicator random variable XA as XA(ω) = 1 if ω ∈ A and XA(ω) = 0 otherwise.

In a finite probability space, we define the expectation of a random variable X as:

E [X] := ∑
ω∈Ω

ν(ω) · X(ω) .

In other words, the expectation of a random variable X is just its average value over Ω,
where each elementary event ω is weighted according to its probability. For instance, if
we roll a single die and look at the outcome, the expected value is 3.5, because all six ele-
mentary events have equal probability. Often one groups together the elementary events
according to the different values of the random variable and rewrites the definition like
this:

E [X] = ∑
a

P(X = a) · a.

An extremely useful fact about expectation is that is a linear transformation. In particular,
if X and Y are random variables, then E [X + Y] = E [X] + E [Y].

Proposition 1.1 (Linearity of Expectation) For any two random variables X and Y, E [X + Y] =
E [X] + E [Y].

Proof: This follows directly from the definition.

E [X + Y] = ∑
ω∈Ω

ν(ω) · (X(ω)+Y(ω)) = ∑
ω∈Ω

ν(ω) ·X(ω)+ ∑
ω∈Ω

ν(ω) ·Y(ω) = E[X]+E[Y].

(Also, obviously, E [cX] = c E [X]).

Example: Card shuffling Suppose we unwrap a fresh deck of cards and shuffle it until
the cards are completely random. How many cards do we expect to be in the same position
as they were at the start? To solve this, let’s think formally about what we are asking. We
are looking for the expected value of a random variable X denoting the number of cards
that end in the same position as they started. We can write X as a sum of indicator random
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variables Xi, one for each card, where Xi = 1 if the ith card ends in position i and Xi = 0
otherwise. These Xi are easy to analyze: P(Xi = 1) = 1/n where n is the number of cards.
P(Xi = 1) is also E[Xi]. Now we use linearity of expectation:

E[X] = E[X1 + . . . + Xn] = E[X1] + . . . + E[Xn] = 1.

So, this is interesting: no matter how large a deck we are considering, the expected number
of cards that end in the same position as they started is 1.

1.3 Conditioning

Conditioning on an event E is equivalent to restricting the probability space to the set E.
We then consider the conditional probability measure νE defined as

νE(ω) =

{
ν(ω)
P[E] if ω ∈ E

0 otherwise
.

Thus, one can define the conditional probability of an event F as

P [F | E] = ∑
ω∈F

νE(ω) = ∑
ω∈E∩F

ν(ω)

P [E]
=

P [E ∧ F]
P [E]

.

For a random variable X and an event E, we similarly define the conditional expectation of
X given E as

E [X | E] = ∑
ω

νE(ω) · X(ω) ,

with νE as above. Verify the following identities.

Proposition 1.2 (Total Probability and Total Expectation) Let Ω be a finite sample space with
probabiliy measure ν. Let E, F ⊆ Ω be events, and X : Ω→ R be a random variable. Then

1. P [F] = P [E] ·P [F | E] + P [Ec] ·P [F | Ec],

2. E [X] = P [E] ·E [X | E] + P [Ec] ·E [X | Ec],

where Ec = Ω \ E.

Example: a random walk stock market Suppose there is a stock with the property that
each day, it has a 50:50 chance of going either up or down by $1, unless the stock is at 0 in
which case it stays there. You start with $m. Each day you can buy or sell as much as you
want, until at the end of the year all your money is converted back into cash. What is the
best strategy for maximizing your expected gain?
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The answer is that no matter what strategy you choose, your expected gain by the end of
the year is 0 (i.e., you expect to end with the same amount of money as you started). Let’s
prove that this is the case.

Define random variable Xt to be the gain of our algorithm on day t. Let X be the overall
gain at the end of the year. Then,

X = X1 + . . . + X365.

Notice that the Xt’s can be highly dependent, based on our strategy. For instance, if our
strategy is to pull all our money out of the stock market the moment that our wealth ex-
ceeds $m, then X2 depends strongly on the outcome of X1. Nonetheless, by linearity of
expectation,

E[X] = E[X1] + . . . + E[X365].

Finally, no matter how many shares s of stock we hold at time t, E[Xt|s] = 0. So, us-
ing Proposition 1.2, whatever probability distribution over s is induced by our strategy,
E[Xt] = 0. Since this holds for every t, we have E[X] = 0.

1.4 Independence

Two events A and B are independent if P(A∧B) = P(A) ·P(B). For events of nonzero prob-
ability, we can more intuitively write this as A and B are independent if P(A | B) = P(A).
One can verify that this is equivalent to P(B | A) = P(B). In other words, restricting to one
event does not change the probability of the other event. Independence is a joint property
of events and the probability measure: one cannot make judgment about independence
without knowing the probability measure.

Two random variables X and Y defined on the same finite probability space are defined to
be independent if for all values x and y, the events “X = x” and “Y = y” are independent.
Equivalently, they are independent if P{X = x | Y = y} = P{X = x} for all non-zero
probability events {X = x} := {ω : X(ω) = x} and {Y = y} := {ω : Y(ω) = y}.
So far, we have considered just two events or two random variables. We say n events
A1, ..., An are mutually independent (sometimes we will just say “independent”) if for all
subsets S ⊆ {1, ..., n} we have:

P

(⋂
i∈S

Ai

)
= ∏

i∈S
P(Ai).

We say n random variables X1, ..., Xn are mutually independent if for all values x1, ..., xn,
the events “X1 = x1”, ..., “Xn = xn” are mutually independent. There is also a weaker
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notion that is often useful called pairwise independence. We say n events are pairwise inde-
pendent if all pairs are independent, and likewise for random variables. Can you think of
three events that are pairwise independent but not mutually independent?

We saw that for any two random variables X and Y we have E [X] + E [Y] = E [X + Y].
However, it is not in general the case that E [X] ·E [Y] = E [X ·Y] (for example, suppose X
and Y are indicator random variables for the same event of probability p; then the LHS is
p2 but the RHS is p). Nonetheless, we do get this property when X and Y are independent.

Proposition 1.3 Let X, Y : Ω→ R be two independent random variables. Then

E [X ·Y] = E [X] ·E [Y] .

Proof:

E [X] ·E [Y] =

(
∑

a
P(X = a) · a

)
·
(

∑
b

P(Y = b) · b
)

= ∑
a,b

a · b ·P(X = a) ·P(Y = b)

= ∑
a,b

a · b ·P(X = a ∧Y = b) (by independence)

= ∑
c

∑
(a,b):ab=c

a · b ·P(X = a ∧Y = b) (grouping)

= ∑
c

c ·P(X ·Y = c) = E [X ·Y] .

Example: Universal hashing. A hash function is a function h : U → {0, .., M− 1} where
U is a universe of inputs, and typically |U| � M. For example, we might hash strings into
the range {1, ..., 10000} to use as a lookup table. A desirable property of a hash function is
that for the subset S of U that you actually care about (for instance, strings corresponging
to English words) that you do not get too many collisions (distinct elements hashing to the
same location), especially when |S| ≈ M. One convenient way to construct such a hash
function is to use randomization.

A challenge here is that we can’t just have h pick a random number when given an input
s ∈ S because we need to be able to find it again (h has to actually be a function). Also,
requiring the R.V.’s Xs = h(s) be mutually independent for all s ∈ S would require too
large a hash function. However, it turns out that pairwise independence will be sufficient
and allow h to be compact and efficient enough to be useful.
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Definition 1.4 A randomized algorithm H to construct hash functions h : U → {0, . . . , M− 1}
is universal if for all s 6= s′ in U, we have

P
h←H

[h(s) = h(s′)] ≤ 1/M.

Note that if the R.V.’s Xs = h(s) are uniformly distributed in {0, ..., M − 1} and pairwise
independent, then H will be universal.

Proposition 1.5 If H is universal, then for any set S ⊆ U, for any s ∈ U (e.g., that we might
want to lookup), if we construct h at random according to H, the expected number of collisions
between s and other elements in S is at most |S|/M.

Proof: Each s′ ∈ S (s′ 6= s) has at most a 1/M chance of colliding with s by definition
of “universal”. Define indicator R.V. Cs,s′ for the event that s and s′ collide, and Cs =

∑s′∈S,s′ 6=s Cs,s′ as the total number of collisions. By linearity of expectation, E[Cs] ≤ |S|/M.

Can we actually construct universal hash families? Here is one approach: Let’s say inputs
are u-bits long. Say the table size M is power of 2, so an index is b-bits long with M = 2b.

What we will do is pick h to be a random linear transformation from Fu
2 to Fb

2 (i.e., a
random b-by-u matrix over F2).

Claim 1.6 For any s 6= s′, Ph[h(s) = h(s′)] = 1/M = 1/2b.

Proof: If s 6= s′ there must exist some index i such that si 6= s′i, and for concreteness
say si = 0 and s′i = 1. Imagine we first choose all of h but the ith column. Over the
remaining choices of ith column, h(s) is fixed. However, each of the 2b different settings
of the ith column gives a different value of h(s′) (in particular, every time we flip a bit in
that column, we flip the corresponding bit in h(s′)). So there is exactly a 1/2b chance that
h(s) = h(s′).

1.5 The countable case

Everything defined above can also be extended to countable spaces but we need to be
careful about the convergence of the above summations.

2 Interesting random variables

Bernoulli random variables A Bernoulli(p) random variable X is defined as taking the
value 1 with probability p and the value 0 with probability 1− p. We can write this as
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P [X = x] = px(1− p)1−x for x ∈ {0, 1}. One may intuitively think of a Bernoulli random
variable as the indicator function of “heads” in an outcome space Ω = {tails, heads} of a
biased coin toss. Alternatively, we simply take the outcome space to be Ω = {0, 1}. More
generally, indicator functions of events are Bernoulli random variables.

Finite Bernoulli i.i.d. sequence We can also think of a sequence of coin tosses, with

Xi =

{
1 if toss i is heads
0 if toss i is tails

.

being n Bernoulli random variables in the probability space Ωn = {0, 1}n, i.e., Xi(ω) = ωi.
Define the product probability measure on this finite space using:

µn(ω) =
n

∏
i=1

pωi(1− p)1−ωi .

Note that if p = 1
2 , we have µn(ω) = 1

2n , i.e., Pn is the uniform distribution over the
outcome space, as all outcomes are equally likely.

Exercise 2.1 For the outcome space defined above, verify that:

• For any fixed i, Xi is indeed a Bernoulli(p) random variable, and

• If I ⊂ [n] and J ⊂ [n] are disjoint, then any function of XI and any function of Xj are
independent random variables.

As noted in the previous lecture, when the latter point holds, we simply say that X1, · · · , Xn
are independent. Furthermore since all the Xi have the same distribution, we call the se-
quence i.i.d., meaning independent and identically distributed.

Binomial random variables Let Zn be a random variable counting the number of heads
associated with n independent biased coin tosses. We can model this in Ωn above as Zn =

∑ Xi.

Let us calculate the expectation of Z. By linearity we have E [Zn] = ∑ E [Xi]. Since Zn =

∑ Xi, we have, E [Zn] = ∑ E [Xi]. Now,

E [Xi] = 1 ·P [Xi = 1] + 0 ·P [Xi = 0]
= P [Xi = 1] = p

Hence E [Zn] = np. Note that we did not use independence in the above calculations. We
just needed that for each i, E [Xi] = p.
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We do need independence, and namely the product probability measure, to calculate
P(Zn = k) for k ∈ [n] (this is often called the probability mass function). First note that
the shorthand (Zn = k) simply means {ω ∈ Ω : Zn(ω) = k}. Since all ω that have the
same number (in this case k) of 1’s have the same probability, we simply need to count
how many such ω’s there are, and multiply by this individual probability.

Exercise 2.2 Verify that Pn(Zn = k) = (n
k)pk(1− p)n−k.

Z is called a Binomial(n, p) random variable.

Infinite Bernoulli i.i.d. sequence and Geometric random variables We would like to
generalize the Bernoulli sequence probability space to an infinite sequence. We would like
to choose Ω = {0, 1}N as our outcome space, but this is not a countable set. We will come
back to the issue of properly defining the probability space with this uncountable Ω.

For now, if we still consider the mental experiment of infinite i.i.d. Bernoulli(p) sequence
of random variables X1, X2, · · · , which we interpret once more as coin tosses. We define
Y be the number of tosses till the first heads. If we are just interested in Y (the first heads
rather than all outcomes of all tosses), we can take Ω to be N.

Exercise 2.3 Although we cannot define a countable probability space for the infinite i.i.d. Bernoulli
sequence, show that if we just want define a space for Y, we can take Ω = N and P(i) =
(1− p)i−1 · p for i ≥ 1.

Y is known as a Geometric(p) random variable.

Let us calculate E[Y], in a somewhat creative way. Let E be the event that the first toss is
heads. Then by total expectation we have,

E [Y] = E [Y|E] ·P [E] + E [Y|Ec] ·P [Ec]

= 1 · p + (1 + E [Y]) · (1− p)

Thus we have, E [Y] = 1
p . The main observation that we used here is that, thanks to

independence, when the first toss is not heads, then the problem resets (with the hindsight
of one consumed toss).
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